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‘s;mﬁ;‘:; Overview

- Autonomy reduces need for
communications in planetary missions

- Explore causal machine learning in
policy planning of a robot manipulator, in
a simulated planetary environment

- Find that the method allows manipulator
to quickly learn about its surroundings

Figure 1. Manipulator used in simulations.
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Current Literature

- Current literature manipulates:
- Objects with known properties

- Objects completely unknown
- Known objects: Classical control algorithms (see [1], [2])

- Unknown objects: Reinforcement learning ([3], [4])

[1] M. Schuster et al., “The LRU Rover for Autonomous Planetary Exploration and its Success in the SpaceBotCamp Challenge,”
2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2016.

[2] P. Lehner et al., “Mobile Manipulation for Planetary Exploration,” 2018 IEEE Aerospace Conference, 2018.

[3] A. Orsulaet al., “Learning to Grasp on the Moon from 3D Octree Observations with Deep Reinforcement Learning,” 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.

[4] D. Kalashnikov et al., “Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation,” 2nd Conference on Robot
Learning (CoRL), Zirich, Switzerland, 2021.



Granted Knowledge Gap in State-of-the-Art
Generalisability
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Figure 2. Generalisability of methods in planetary missions

[1] M. Schuster et al., “The LRU Rover for Autonomous Planetary Exploration and its Success in the SpaceBotCamp Challenge,” 2016 International Conference on Autonomous
Robot Systems and Competitions (ICARSC), 2016.

[2] P. Lehner et al., “Mobile Manipulation for Planetary Exploration,” 2018 IEEE Aerospace Conference, 2018.

[3] A.Orsulaet al., “Learning to Grasp on the Moon from3D Octree Observations with Deep Reinforcement Learning,” 2022 I[EEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022.

[4] D. Kalashnikov et al., “Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation,” 2nd Conference on Robot Learning (CoRL), Zirich, Sw itzerland, 2021.
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Causal Machine Learning

- Causal Curiosity ([5]): Uses determination of causal factors
- Causal factor: A parameter affecting outcome of actions

- Manipulator learns about objects based on changing causal factors
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[5] S. Sontakke et al., “Causal Curiosity: RL Agents Discovering Self-supenised Experiments for Causal Representation Learning,” Proceedings of the 38th
International Conference on Machine Learnina, PMLR 139, 2021. 2021.



‘mﬁs‘g Application to Planetary Environment

- By studying time series, should be possible to identify different
clusters of objects (e.g. planetary rocks)

- Training is carried out live, in exploration environment

- Goal: Find the action that best separates objects based on
causal factors



Granfield Differentiating Objects

- Over time, manipulator learns actions that can differentiate the objects
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Overview of Algorithm Used
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Cranfiald Simulation

- Simulated many environments that differ in one causal factor (e.g.
object mass, friction, gravity)

- Manipulator uses action on planetary objects, records trajectories

Figure 4. Manipulator
pushing an object.
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Trajectory Classification

- Classify using k-means clustering on time series

- Allows differentiation between e.g. light and heavy objects

Unlabelled Data

Labelled Data

k-means

%
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Fig 5. k-means clustering.
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Classification and Scoring

- Actions scored based on how well they separate clusters

- An action that separates clusters well gives more information

Object Trajectories over Time
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Fig 6. Example of well-separated clusters.



Granted Policy Planning

- Using scores from Step 2, choose best actions to classify

- Generate new set of actions similar to best actions, and iterate

New
Actions Actions

pest Policy
Planning

Fig 7. Diagram of policy planning.



Granfes Results — Object Mass

- Binary classification —
separate the objects into
light or heavy classes

- Reward function of 1
Implies perfect classification

- Using more actions per
iteration improves results
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Fig 8. Effect of Number of Actions on Reward Function.



Granfes Results — Object Friction

- Separate objects based on
low friction/high friction

- Similar results to case of
object mass

- Manipulator tends to slide
objects along ground more
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Fig 9. Effect of Number of Actions on Reward Function.



e Results — Gravity
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Fig 10. Effect of Number of Actions on Reward Function



Conclusions and Motivations
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- Method separates objects given wide
range of causal factors

- Any causal factor affecting outcomes of
actions can be studied

Motivation: Wheel Slip Prediction

- Potential application is scouting hazardous
terrain, by interacting with soill

- Deeper insight than computer vision
methods

Fig 10. Spirit rover caught in sand trap.
Source: NASA/JPL



Questions?
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Email: clan@mcdonnell.eu
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